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SUMMARY

A moving mesh method is outlined based on the use of monitor functions. The method is developed
from a weak conservation principle. From this principle a conservation law for the mesh position is
derived. Using the Helmholtz decomposition theorem, this conservation law can be converted into an
elliptic equation for a mesh velocity potential.
The moving mesh method is discretized using standard �nite elements. Once the mesh velocities are

obtained an arbitrary Lagrangian–Eulerian (ALE) (Journal of Computational Physics 1974; 14:227)
�uid solver is used to update the solution on the adaptive mesh.
Results are shown for the compressible Euler equations of gas dynamics in one and two spatial

dimensions. Two monitor functions are used, the �uid density (which corresponds to a Lagrangian
description), and a function which includes the density gradient. A variety of test problems are consid-
ered. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper an adaptive method is presented for the solution of multi-dimensional hyperbolic
conservation laws of the form

Ut +∇ ·F(U )=0 in �(t)× [0; T ] (1)

Here U ≡ U (x; t) is some m-vector of conserved variables and x and t are spatial and temporal
variables, respectively. System (1) is solved in some spatial region �(t) having a boundary
@�(t) which may or may not be moving in time.
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The adaptive method which is presented in this paper is closely related to both the GCL
method of Cao et al. [1] and the deformation map method [2].

2. FORMULATION OF THE MOVING MESH METHOD

Let M (x; t)¿0 be a user-de�ned monitor function which re�ects the characteristics of the
solution to (1). The mesh positions are chosen to satisfy

∫
�(t)

M d�=constant in time (2)

for all �(t). In practice, M will depend on the solution of the PDE (1) and its partial
derivatives. Di�erentiating (2) with respect to time gives

d
dt

∫
�(t)

M d�=0 (3)

which is a Lagrangian description of a pseudo-�uid which has a pseudo-density function M
and moves with a pseudo-velocity ẋ, say. Using the Reynolds’ Transport Theorem on (3)
gives

∫
�(t)

∇ · (M ẋ) d�=−
∫
�(t)

Mt d� (4)

which is a conservation law for the pseudo-�uid. The velocity ẋ is not uniquely determined
by Equation (4). Therefore an additional condition on the velocity �eld is required. Following
Cao, Huang and Russell in Reference [1], the Helmholtz decomposition theorem is used to
prescribe the curl condition

curl ẋ=curl q (5)

where q is some given vector �eld. The curl condition shows that there exists a potential
function  such that

ẋ= q+∇ (6)

Using (6) in Equation (4) results in an elliptic equation for the velocity potential  of the
pseudo-�uid.

∫
�(t)

∇ · (M∇ ) d�=−
∫
�(t)

Mt d�−
∫
�(t)

∇ · (Mq) d� (7)

A boundary condition involving either  or @ =@n on the boundary of the domain @� is also
required. One such condition which may be prescribed is ẋ · n=0 or @ =@n=− q · n, that is
none of the pseudo-�uid should leave the domain.
Since M¿0 and Mt is prescribed in terms of the solution of the underlying PDE (1),

Equation (7) has a unique solution  from which ẋ can be obtained using (6). The velocity
of the pseudo-�uid ẋ is induced by the choice of the monitor function M and the velocity
�eld q. It is this velocity ẋ that will become the ALE velocity.
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3. WEAK FORMS AND A FINITE ELEMENT METHOD

The velocity potential equation (7) obtained in the previous section now needs to be solved
numerically for  and hence the velocity of the pseudo-�uid ẋ. This velocity will then be
used as the ALE velocity in an ALE �uid solver. The velocity potential equation will be
solved using �nite elements, as this method is very �exible in multidimensions [3]. A weak
form of Equation (7) will be needed so that we can apply a FE discretization. A distributed
generalization of Equation (2) is

∫
�(t)

wM d�=constant in time (8)

where w is a test function, which is once di�erentiable. Upon di�erentiating (8) with respect
to time and using Equation (6), we have

∫
�(t)

w∇ · (M∇ ) d�=−
∫
�(t)

wMt d�−
∫
�(t)

w∇ · (Mq) d� (9)

The test function w is chosen to be moving with the velocity ẋ and hence Dw=Dt= @w=@t +
ẋ · ∇w=0, which has been used in the derivation of (9). Now that a weak form of the
velocity potential equation has been derived, we can apply standard �nite elements.
We denote the �nite element approximations to U , ẋ, q and  by Ũ , Ẋ, Q and �,

respectively. The domain �(t) is partitioned into nonoverlapping computational cells and a
patch of such cells surrounding the ith node will be denoted by �i(t). The test function w
becomes one of the �nite element basis functions wi which form a partition of unity. All the
�nite element approximations are expanded in terms of these basis functions. In all the work
presented we will take the basis functions to be piecewise linear functions, so hat functions
in 1D and pyramid functions de�ned on triangular elements in 2D. Therefore the velocity
potential equation (9) becomes

∫
�i(t)

wi∇ · (M∇�)d�=−
∫
�i(t)

wi Mt d�−
∫
�i(t)

wi∇ · (MQ) d� (10)

The velocity potential equation (10) leads to a weighted sti�ness matrix system for �. The
velocity is then recovered from the velocity potential using the weak form

∫
�i(t)

wiẊ d�=
∫
�i(t)

wi∇�d� (11)

which is equivalent to

min
Ẋ i

‖Ẋ − ∇�‖2L2 (12)

Equation (12) leads a set of mass matrix systems, one for each component of the velocity
�eld Ẋ. Once the velocity has been found we can use it in an ALE �uid solver and time-step
the mesh.
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4. NUMERICAL RESULTS

In this section, numerical results are presented for the solution of the compressible Euler
equations of gas dynamics [4]. The Euler equations, along with the ideal gas equation of
state, are solved on a moving adaptive mesh generated by the method outlined in the previ-
ous sections. In all the results shown the ratio of speci�c heats was taken to be �=1:4. Once
a mesh velocity has been generated, by solving (10) and calculating the velocity through
(12), the Euler equations need to be solved on a moving mesh. This is done by solving
the ALE form of the Euler equations, which are the equations transformed into a mov-
ing frame of reference. In one spatial dimension this is done with the ALE form of the
Roe Riemann solver [5, 6] and in two dimensions with the HLLC Riemann solver [7]. It
should also be noted that in all the results shown we have taken the velocity �eld q to
be zero.
Two test cases are considered. In 1D we solved the Sod shock tube problem [8]. The

problem consists of two regions of gas initially separated by a membrane at x= 1
2 . The gas to

the left of the membrane is more dense and at a higher pressure compared to the one on the
right. Also, the gases are initially at rest. The membrane is then removed and the problem is
to �nd the subsequent motion of the gases.
This problem was solved using two di�erent monitor functions. The �rst used was M =�,

where � is the density of the gas. This monitor function leads to Lagrangian mesh movement.
Results for this monitor function are shown in Figure 1. We also solved this problem using the
monitor function M =1 + �|�x|, with a suitable scaling �. This monitor function was chosen
so as to move mesh points into regions of the �ow where there are large variations in the
�uid density. Results for this problem are shown in Figure 2. The trajectories clearly show
how the mesh follows the velocity of the �uid in Figure 1 and responds to the characteristics
in Figure 2. The results obtained from the moving mesh algorithm were compared to the
exact solution, which was computed with an exact Riemann solver.

Figure 1. Lagrangian Solution to the 1D Sod shock tube problem at t=0:2 using a
Roe Riemann-solver with a superbee limiter on a moving mesh obtained from M =�.

(CFL=0:5; N =100). Trajectories of the mesh points.
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Figure 2. ALE Solution to the 1D Sod shock tube problem at t=0:2 using a Roe
Riemann-solver with a superbee limiter on a moving mesh obtained from M =1+�|�x|,

�=�=maxx |�x|. (CFL=0:5; N =100; �=2). Trajectories of the mesh points.

Figure 3. Density solution to the diverging cylindrical shock tube problem at t=0:2 using
a �rst order in space HLLC Riemann-solver on a moving mesh obtained from M =�. Mesh

with 10 201 nodes and 20 000 triangles obtained at t=0:2.

In 2D we solved a cylindrical shock problem. The problem consists of two regions of gas
separated by a membrane at x2 + y2 =

(
1
2

)2
. The gas at the centre of the region has a higher

density and is at a higher pressure compared to the one outside the membrane.
This problem was also solved using two di�erent monitor functions. The �rst monitor

function was again chosen as M =�. Results for this monitor function can be seen in Figure
3. The second monitor function used was M =1+�|∇�|2, where � was suitably chosen. Results
for this monitor function can be seen in Figure 4. The problem was solved numerically in
2D for each of these monitor functions and compared with a 1D radial computation of the
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Figure 4. Density solution to the diverging cylindrical shock problem at t=0:2 using a �rst
order in space HLLC Riemann-solver on a moving mesh obtained from M =1 + �|∇�|2.

Mesh with 10 201 nodes and 20 000 triangles obtained at t=0:2.

problem computed on a very �ne mesh. Although the density pro�les are not strongly a�ected
the mesh is clearly moving in a rational way. It is expected that considerable improvement
will occur when a second-order solver is implemented.

5. CONCLUSIONS

A method for generating mesh velocities using monitor functions has been presented which
can then be used in ALE �uid solvers. We have used the method outlined in Sections 2 and
3 to produce an adaptive mesh for the solution of the Euler equations of gas dynamics in
one and two spatial dimensions. Two test problems have been solved using di�erent monitor
functions leading to di�erent types of mesh movement.
In future work we aim to use improved initial meshes for the problem, instead of equi-

spaced meshes. We also need to increase the order of the HLLC Riemann solver in 2D in
order to better resolve the density pro�le, which will in turn sharpen the adaptivity. Other
monitor functions will be tried and work will also be done on investigating the in�uence of
the rotational vector �eld q in (6) and how to choose it for a given problem.
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